Generation of analytic semigroups by strongly elliptic operators under general boundary conditions
نویسندگان
چکیده
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملDirichlet Forms for General Wentzell Boundary Conditions, Analytic Semigroups, and Cosine Operator Functions
The aim of this paper is to study uniformly elliptic operators with general Wentzell boundary conditions in suitable Lp-spaces by using the approach of sesquilinear forms. We use different tools to re-prove analiticity and related results concerning the semigroups generated by the above operators. In addition, we make some complementary observations on, among other things, compactness issues an...
متن کاملElliptic operators generating stochastic semigroups
We use an intrinsic metric type approach to investigate when C0-semigroups generated by second order elliptic differential operators are stochastic. We give a new condition for stochasticity that encompasses the volume growth conditions by Karp and Li and by Perelmuter and Semenov. MSC 2000: 47D07, 35J15, 47B44
متن کاملAnalytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations
In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...
متن کاملOrdinary Differential Operators under Stieltjes Boundary Conditions
The operator Lry = / + Py, whose domain is determined in part by the Stieltjes integral boundary condition Jo dv{i)y{f) = 0, is studied in Xj¡($>, 1), 1 < p < oo. It is shown that Lp has a dense domain; hence there exists a dual operator L* operating on .£¡¡(0,1). After finding LJ we show that both L, and L¡¡ are Fredholm operators. This implies some elementary results concerning the spectrum a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1980
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1980-0561838-5